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Adjustable Model-Based Fusion Method for
Multispectral and Panchromatic Images
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Abstract—In this paper, an adjustable model-based image fu-
sion method for multispectral (MS) and panchromatic (PAN)
images is developed. The relationships of the desired high spatial
resolution (HR) MS images to the observed low-spatial-resolution
MS images and HR PAN image are formulated with image obser-
vation models. The maximum a posteriori framework is employed
to describe the inverse problem of image fusion. By choosing
particular probability density functions, the fused HR MS images
are solved using a gradient descent algorithm. In particular, two
functions are defined to adaptively determine most regularization
parameters using the partially fused results at each iteration,
retaining one parameter to adjust the tradeoff between the en-
hancement of spatial information and the maintenance of spectral
information. The proposed method has been tested using Quick-
Bird and IKONOS images and compared to several known fusion
methods using quantitative evaluation indices. The experimental
results verify the efficacy of this method.

Index Terms—Adjustable image fusion, maximum a posteriori
(MAP), model-based, remote sensing.

I. INTRODUCTION

DUE TO the limits of sensor performance and/or other
factors, the acquired images are often aliased and blurred.

Although the single-based restoration techniques [1], [2] have
the performance to increase the image definition, they only
can recovery the information below the cutoff frequency de-
termined by the diffraction limit. In order to get more image
details, image fusion techniques are often used to integrate the
complementary information among different images [3]–[7].
For example, multispectral (MS) images are often fused with
a panchromatic (PAN) image to increase the spatial resolution.

So far, various MS/PAN fusion methods have been presented
in the literature. Generally, most of the existing methods can
be sorted into several basic categories: arithmetic combination
methods, component-substitution methods, high-frequency in-
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formation injection (HFII) methods, mixture analysis methods,
model-based methods, and hybrid methods. Arithmetic com-
bination was the earliest and simplest fusion method, based
on the arithmetic computation of the PAN image and MS
bands, such as the adding method, multiplication method,
Brovey method, etc. [7]. The component-substitution methods
are based on the transformation of the MS images into an-
other space and the replacement of one of the newly gained
components by the PAN image or by a more highly resolved
image. The intensity–hue–saturation (IHS) transformation [8]
and principal component analysis (PCA) [9]–[11] are the
two most widely used examples. The fast spectral response
function [12], University of New Brunswick (UNB) method
[13], and Gram–Schmidt (GS) method [14] also belong to the
component-substitution group. The HFII methods extract the
high-frequency ation from the PAN image and inject them into
the MS images. Ranchin and Wald called this type of methods
as “ARSIS” (from its French acronym). Many HFII methods are
based on multiresolution analysis such as Laplacian pyramid
[15], wavelet transform [16], [17], curvelet transform [18], and
contourlet transform [19]. Other HFII methods do not perform
any transformation of the high frequencies before injection into
MS low spatial resolution (LR) images [20], including high-
pass filter [21], smoothing filter-based intensity modulation
[22], etc. The Ehlers method [23] is a hybrid one which
combined the IHS component-substitution and the HFII method
together. Mixture analysis methods introduce spectral unmixing
into the fusion process, and typical fusion methods are based on
a linear mixing mode [24] and a stochastic mixing model [25].

All of the fusion methods addressed earlier do not set up an
explicit relation model between the observed images and de-
sired images. Recently, partly inspired by image restoration and
superresolution reconstruction techniques [26] (another branch
of image fusion), researchers have developed some model-
based MS/PAN fusion methods. These methods are based on
an image formulation model and regard the fusion process as
an inverse optimization problem; therefore, they have stronger
theoretical frameworks. In [27], Aguena and Mascarenhas use
projection onto convex sets (POCS) to implement the MS/PAN
fusion problem. Hardie et al. [28] propose a maximum
a posteriori (MAP) method, which allows for any number of
spectral bands in the primary and auxiliary image. Zhang et al.
[29] extended this method by using wavelet-based Bayesian
method to consider spatial correlation. Molina et al. [30] pro-
pose a variational-approximation-based fusion method follow-
ing the hierarchical Bayesian framework. In [31], the spatial
dependence in the MS images is learned from the PAN image
using an autoregressive model, and a suitable regularization

1083-4419/$31.00 © 2012 IEEE
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technique is defined to enhance the resolution of MS data. More
recently, the method has been further developed by incorpo-
rating inhomogeneous Gaussian Markov random field learning
[32]. Li and Leung [33] developed a restoration-based MS/PAN
fusion method, which uses the linear combination model of the
PAN image as in [30]. Aanæs et al. [34] propose a method in
which the image formation mode is based on the frequency
composition and light intensity. Recently, Li and Yang [35]
addressed the MS/PAN fusion problem from the perspective of
compressed sensing theory.

In this paper, we present an adjustable model-based method
for the MS/PAN fusion problem using the MAP framework.
The method is based on the framework of MAP and takes
full advantage of the sensor spectral response functions. More
importantly, this paper presents a method to adaptively deter-
mine most regularization parameters, retaining one parameter
to adjust the tradeoff between the enhancement of spatial infor-
mation and the maintenance of spectral information.

The remainder of this paper is organized as follows. In
Section II, the observation models of the MS and PAN im-
ages are formulated. The MAP fusion method is presented
in Section III. In Section IV, the method to determine the
regularization parameters is presented. The differences between
the proposed method and the existed model-based methods are
described in Section V. Experimental results are provided in
Section VI, and Section VII concludes this paper.

II. IMAGE OBSERVATION MODELS

A. Observation Model of MS Images

Let the bth band of the observed MS images be denoted
in the vector form by yb = [yb,1, yb,2 . . . ., yb,N1×N2

]T , where
N1 ×N2 is the image size. Letting L denote the spatial scale
difference between the MS and PAN images, the underly-
ing high spatial resolution (HR) version of yb can be repre-
sented as xb = [xb,1, xb,2 . . . , xb,M1 ×M2]

T with M1 = L×
N1,M2 = L×N2. The image observation model relates the
desired HR image xb to the observed LR image, and it is
represented as

yb = DSbxb + nb (1)

where Sb represents the blur matrix with the size of M1M2 ×
M1M2, D is a N1N2 ×M1M2 down-sampling matrix, and nb

represents the N1N2 × 1 noise vector. Generally, Sb should
be estimated using blind restoration methods. If the blurring
was ignored in the fusion process, it would become an identity
matrix.

For convenience, (1) can be rewritten as (2) by substituting
the product of matrix Sb and D with Ab

yb = Abxb + nb. (2)

Thus, the full set of MS images of y = [yT
1 ,y

T
2 . . .yT

B ]
T

and

x = [xT
1 ,x

T
2 . . .xT

B ]
T

can be related as

y = Ax+ n (3)

where the size of A is (N1N2B)× (M1M2B) and the size of
n is (N1N2B)× 1, with B being the number of the observed
MS images.

B. Observation Model of PAN Image

The second image observation model relates the desired HR
MS images x to the observed HR PAN image z. It has been
proved that a PAN image is almost a linear combination of
ideal HR MS images when the PAN band approximately covers
the MS bands [33], [36], [37]. Thus, the spectral combination
model can be denoted as

z(i, j) =

B∑
b=1

cbxb(i, j) + τ + v(i, j) (4)

where z(i, j) is the brightness value of the PAN image with
i and j being the positions, cb is the corresponding weight of
the bth band value xb(i, j), B is the total band number, τ is an
offset, and v(i, j) is the noise. Model (3) can be expressed in
matrix vector form as

z = Cx+ τI + v. (5)

Here, x = [x1,x2 . . .xB ]
T , I is the identity matrix, and C is

a sparse matrix that has the following form:

⎡
⎢⎣
c1 0 0 · · · c2 · · · · · · cB
c1 0 0 · · · c2 · · · · · · cB

. . . . . .
c1 0 0 · · · c2 · · · · · · cB

⎤
⎥⎦

where c1, c2, . . . . . . , cB can be solved using the sensor spectral
response functions [33], [36], [37]. The offset τ can be approxi-
mately calculated using the down-degraded PAN image and the
observed LR MS images

τ = aver

(
Dz −

B∑
b=1

cbyb

)
(6)

where aver(·) is the average function.

III. MAP FUSION METHOD

A. MAP Formulation

The purpose is to realize the MAP estimate of HR MS images
x = [x1,x2 . . .xB ]

T , given the observed LR MS images y =
[y1,y2 . . .yB ]

T and the PAN image z. The estimate can be
computed by

x̂ = argmax
x

p(x|y, z). (7)

Applying Bayes’ rule, (6) becomes

x̂ = argmax
x

p(x)p(y, z|x)
p(y, z)

. (8)
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Since p(y, z) is independent of x, it can be considered a
constant and removed from the maximum function

x̂ = argmax
x

p(x)p(y, z|x)
= argmax

x
p(x)p(y|x)p(z|x,y)

= argmax
x

p(x)p(y|x)p(z|x). (9)

Since z and y are both known quantities, therefore, it is tenable
for p(z|x,y) = p(z|x) in (9).

B. Fusion Model

It is seen that there are three probability density functions
in (9). The function p(y|x) provides a measure of the con-
formance of the estimated image x to the observed image y
according to the observation model (3). It is determined by the
probability density of the noise vector, i.e.,

p(y|x)= 1√
(2π)N1N2×B |K|

exp

{
−1

2
(y−Ax)K−1(y−Ax)

}
(10)

where K is the covariance matrix that describes the noise
n. As in [31]–[33] and [35], this paper models the noise as
independent and identically distributed from pixel to pixel.
However, we assume that the distribution is independent and
nonidentical from band to band. In this case, the matrix K
is diagonal with the elements being noise variances of the
corresponding bands. Thus, (10) can be simplified to

p(y|x) =
B∏

b=1

1

(2παb)N1N2/2
exp

{
−‖yb −Abxb‖2/2αb

}
(11)

where αb is the variance of the noise nb.
The function p(z|x) is determined by the probability density

of the noise vector v in (5) and is expressed as

p(z|x) = 1

(2πβ)M1M2/2
exp

{
−‖z −Cx− τI‖2/2β

}
(12)

where β is the variance of the noise v.
The density function p(x) models the image prior. Although

some cross-channel models have been tried as in [38] and [39]
in our experiments, the image equality of the fused images
does not have a considerable improvement with the increase of
computational complexity. One possible reason is that different
MS bands have been correlated by (12). Therefore, this paper
models the image prior independently for each band. The
Laplacian prior has been used for the fusion problem in [30] and
[33]. However, this prior often leads to some high-frequency
energy in the image being removed [40].Therefore, an edge-
preserving Huber–Markov image model [41] is employed as

p(x) =
B∏

b=1

1

(2πγb)M1M2/2

× exp

⎧⎨
⎩−

∑
i,j

∑
ξ∈ψ

ρ (dξ (xb(i, j))) /2γb

⎫⎬
⎭ (13)

where γb is the model parameter of the bth band, ξ is a local
group of pixels called a clique, and ψ is the set of all the cliques.
The quantity dξ(xb(i, j)) is a spatial activity measure to pixel
xb(i, j), and the following finite second-order differences are
computed in two adjacent cliques for every location (i, j) in the
image

d1ξ (xb(i, j)) =xb(i− 1, j)− 2xb(i, j) + xb(i+ 1, j) (14)

d2ξ (xb(i, j)) =xb(i, j − 1)− 2xb(i, j) + xb(i, j + 1). (15)

In (13), ρ(·) is the Huber function defined as

ρ(h) =

{
h2 |h| ≤ μ
2μ|h| − μ2 |h| > μ

(16)

where μ is a threshold parameter separating the quadratic and
linear regions. When μ approaches +∞, the prior becomes
the Gauss–Markov, which has similar spatial constraints to the
Laplacian prior used in [30].

Substituting (11)–(13) in (9) and implementing the mono-
tonic logarithm function, after some manipulation, N1, N2, M1,
and M2 can be safely dropped, and the maximization of this
posterior probability distribution is equivalent to the following
regularized minimum problem:

x̂ = argmin [E(x)] (17)

where

E(x) =

B∑
b=1

λb,1‖yb −Abxb‖2 + ‖z −Cx− τI‖2

+

B∑
b=1

λb,2

∑
i,j

∑
ξ∈ψ

ρ (dξ (xb(i, j))) . (18)

In (18), λb,1 = β/αb and λb,2 = β/γb are regularization pa-
rameters. It is noted that the regularization parameters balance
the relative contributions of the different terms. Since there
have been regularization parameters in the first and the third
terms, the relative contribution of the middle term can also be
balanced by these parameters. Therefore, there is no need for
an additional parameter.

C. Optimization Method

The gradient descent method is employed to solve the fusion
images. Differentiating (18) with respect to xb, we have

∇E(xb) = −2λb,1A
T
b (yb −Abxb)− 2cb(z −Cx− τI)

+2λb,2G
T ρ′(Gxb) (19)

where Gxb is a vector comprising all elements of clique set
ψ with G being the corresponding large sparse matrix. The
corresponding gradient element of the prior term is given by

ρ′(h) =

{
2h |h| ≤ μ
2μ sign (h) |h| > μ

. (20)
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Thus, the HR image xb can be solved by employing the
successive approximation iteration

x̂b,n+1 = x̂b,n − βn∇E(x̂b,n) (21)

where n is the iteration number and βn is the step size.
By making a second-order Taylor series approximation to the
objective function at the current state x̂n, a quadratic step size
approximation becomes (22) shown at the bottom of the page,
where Hb is the Hessian matrix of

∑
i,j

∑
ξ∈ψ ρ(dξ(xb(i, j))).

In each iteration, the MS images are updated one by one. The
iteration is terminated when

‖x̂n+1 − x̂n‖2/‖x̂n‖2 ≤ d (23)

where d is a predetermined coefficient.

IV. DETERMINATION OF REGULARIZATION PARAMETERS

To implement the MAP fusion described earlier, 2B regular-
ization parameters of λb,1 and λb,2(b = 1, 2 . . . B) should be
determined, and these parameters are controlled by the vari-
ances αb, β, and γb. In most cases, it is difficult or impossible
to obtain an accurate estimate of such variances. The best way
to solve the problem is to look for a method to adaptively
determine all the 2B parameters. In MS/PAN fusion, however,
there is a tradeoff between the enhancement of spatial infor-
mation and the maintenance of spectral information. Different
remote sensing applications may expect different fusion results.
Therefore, some adjustable methods have been proposed to
control over how much spatial detail or spectral information
should be retained [42], [43].

This paper proposes an alternative method to solve the prob-
lem of parameter determination. Rewriting (18) as

E(x) = λtradeoff

B∑
b=1

λ′
b,1‖yb −Abxb‖2 + ‖z −Cx− τI‖2

+

B∑
b=1

λb,2

∑
i,j

∑
ξ∈ψ

ρ (dξ (xb(i, j))) (24)

where λtradeoff = λb,1/λ
′
b,1 is regarded as an adjustable pa-

rameter between the enhancement of spatial information and
the maintenance of spectral information, the 2B parameters
of λ′

b,1 and λb,2(b = 1, 2 . . . B) are determined adaptively. In
the literature, the generalized cross-validation (GCV) [44],
L-curve [45], U-curve [46], [47], and variational-approximation
[30] methods have been used for parameter determination in
ill-posed inverse problems. These methods often need compli-
cated mathematical calculations. For example, the calculation

of trace of some matrix is inevitable in the GCV method, which
requires the construction of the large sparse matrices in (24).
In this paper, the large sparse matrices are interpreted as direct
image operators to relieve the computation load. Inspired by
[48]–[50], therefore, this paper proposes to determine λ′

b,1

and λb,2 by designing appropriate functions of the partially
fused images and updating them at each iteration. The main
challenge is that two series of regularization parameters should
be adaptively determined because of the incorporation of a
spectral residual term in the MS/PAN fusion problem.

A. Determination of λ′
b,1

The regularization parameter λ′
b,1 should be selected in such

a way that each individual cost function is convex and it is
able to control the balance of residual terms ‖yb −Abxb‖2
in different bands. Based on the regularization theory, the first
property that it should satisfy is λ′

b,1 ≥ 0 for any band. Second,
since λ′

b,1 is actually a relative weight of the bth band, we

assume that the average of all bands is 1, i.e.,
∑B

b=1 λ
′
b,1 = B.

Third, based on the set theoretic formulation, λ′
b,1 should be set

as a larger value to increase the contribution of ‖yb −Abxb‖2
in the next iteration when its current energy value is smaller,
and vice versa [48]–[50]. Thus, λ′

b,1 is inversely proportional to
‖yb −Abxb‖2. According to these recognitions, we define the
function as

λ′
b,1 = B ·

1/ log
(
1 + ‖yb −Abxb‖2

)
B∑

b=1

[1/ log (1 + ‖yb −Abxb‖2)]
. (25)

Here, the log(·) function prevents the parameter from being too
sensitive to the partially reconstructed image x̂b, and the value
1 in the variable part of the log(·) function ensures the condition
of λ′

b,1 ≥ 0.

B. Determination of λb,2

The function of λb,2 is using E3 =∑
i,j

∑
ξ∈ψ ρ(dξ(xb(i, j))) to improve the instability problem

caused by E1,2 = λb,1‖yb −Abxb‖2 + ‖z −Cx− τI‖2.
Therefore, a feasible way to determine λb,2 is to update it at
each iteration using E1,2 and E3 with respect to the partially
reconstructed image x̂b, i.e.,

λb,2 = f(E1,2, E3). (26)

First, the smaller the norm E3, the more energy is distributed
to the low frequency components in the partially reconstructed
image, and a relatively smaller regularization parameter can be

βn =

B∑
b=1

[∇E(x̂b,n)]
T ∇E(x̂b,n)

B∑
b=1

[∇E(x̂b,n)]
T [λb,1A

T
b Ab + λb,2Hb

]
∇E(x̂b,n) +

[
B∑

b=1

cb∇E(x̂b,n)

]T [ B∑
b=1

cb∇E(x̂b,n)

] (22)
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used to further recover high-frequency components, and vice
versa [50]. Second, a larger E1,2 represents a larger model error,
and a relatively larger λb,2 can be used to strengthen the spatial
constraint. Therefore, λb,2 should be proportional to both E1,2

and E3. In this paper, it is assumed to have the form

λb,2 =
λb,1‖yb −Abxb‖2 + ‖z −Cx− τI‖2

χb −
∑
i,j

∑
ξ∈ψ

ρ (dξ (xb(i, j)))
(27)

where χb is a parameter related to the image yb or xb.
In order to ensure λb,2 > 0, χb should be larger than∑

i,j

∑
ξ∈ψ ρ(dξ(xb(i, j))). Our experiments indicate that

χb = ‖yb‖2 is a good choice for most cases.

V. DIFFERENCE WITH OTHER MODEL-BASED METHODS

During recent years, several model-based methods have been
proposed [27]–[35]. With the exception of the method in [27],
which employs the POCS framework, most methods are based
on a Bayesian or regularization framework. Similarly, these
methods are based on some image models and regard the fusion
process as an inverse optimization problem. Generally, there are
two types of image models that can be used. One relates the HR
MS images x to the LS MS images y, and the other relates x
to the observed HR PAN image z. In this paper, (3) and (5)
respectively correspond to these two types of image models.

In some references, only the first type of image model is used.
In [31] and [32], for example, the energy function of the fusion
model is

E(x) = λ

B∑
b=1

‖yb −Abxb‖2 +
B∑

b=1

U(xb) (28)

where U(xb) is either an inhomogeneous Gaussian Markov
model or an autoregressive model. Here, the original PAN
image z is not included in the fusion model but is used to learn
the parameters in U(xb). This model is based on the assumption
that all MS bands have similar spatial structures to the PAN
image. The methods in [28] and [29] also never use the second
type of image model. More distinctly, the derived Bayesian
equation

x̂ = argmax
x

p(y|x)p(x|z) (29)

used in these references is greatly different from (9) in this pa-
per. Moreover, in [28], [29], [31], and [32], the sensor spectral
response function that plays an important role in our method is
never used.

Some other methods employ both types of image models but
use a simplified parameter set. For example, the parameters λb,1

and λb,2 in (18) are assumed invariant in different bands, and
λb,1 is set to 1 in [33] and [35]. Thus, the fusion model becomes

E(x) =
B∑

b=1

‖yb −Abxb‖2 + λ
B∑

b=1

∑
i,j

∑
ξ∈ψ

ρ (dξ (xb(i, j)))

+‖z −Cx− τI‖2. (30)

This choice presumes that nb in (2) and v in (5) have the same
standard deviation. However, it is obvious that this assumption
is not satisfied in many cases. Furthermore, the restoration-
based fusion method in [33] does not consider the down-
sampling matrix D in the observation model, and the
interpolated versions of MS images are directly used in the
fusion process. The advantages of the proposed method are
validated in the experiment section.

The method in [34] ignores the direct physical relations
embodied in the two types of image models. Alternatively, the
relations between z, yb and xb are expressed in one empirical
equation

xb = yb + αxb,z (z −mean(z)) (31)

where mean(z) denotes the mean of the HR pixels in the scope
of one LR pixel and the parameter αxb,z denotes the cosine of
the angle between xb and z.

In this paper, two functions are defined to adaptively de-
termine most of the regularization parameters. In [30], the
adaptive determination of model parameters in the fusion
problem is also researched using a variational distribution ap-
proximation technique. This method needs very complicated
mathematical calculations, whereas our proposed method is
much more computationally simple. Moreover, the proposed
method retains one parameter to adjust the tradeoff between
the enhancement of spatial information and the maintenance
of spectral information. The adjustable fusion technique can
make the method more applicable to different remote sensing
applications. In order to avoid the image being oversmoothed,
this paper employs an edge-persevering Huber–Markov prior
model. The advantage of this model is also validated in the
experiment section.

VI. EXPERIMENTAL RESULTS

In the experiments, we tested the proposed algorithm using
QuickBird and IKONOS images. In order to evaluate the fused
images, two properties need to be checked [33], [51], [52]. The
first is the synthesis property that any fused image (or MS set of
images) should be as identical as possible to the image (or MS
set of images) that the corresponding sensor would observe with
the highest spatial resolution. As there is no reference image
available at high spatial resolution, a commonly used evaluation
method is to resample the original PAN and MS images down
to an inferior resolution level and then treat the original MS
images as the real high-resolution images to compare with the
synthesized images. The second is the consistency property
that any fused image (or MS set of images), once degraded
to its original resolution, should be as identical as possible to
the original LR image (or MS set of images). This property is
often used for the validation of spectral fidelity when the fusion
method is performed on real observed images.

A. Experiments on Simulated Images

In the simulated experiments, the proposed method and
several typical existed fusion methods are compared in terms
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of the synthesis property. The fused images are evaluated us-
ing five quality indices. These are the root-mean-square error
(rmse), correlation coefficient (CC), universal image quality
index (UIQI), relative dimensionless global error in synthe-
sis (ERGAS), and spectral angle (SA). They are defined by
(28)–(32), respectively

rmseb =

√
‖x̂b − xb‖2
M1M2

(32)

CCb =
σx̂bxb

σx̂b
σxb

(33)

UIQIb =
4σx̂bxb

mx̂b
mxb(

σ2
x̂b

+ σ2
xb

)(
m2

x̂b
+m2

xb

) (34)

ERGAS =100 · L ·

√√√√ 1

B

B∑
b

MSEb

m2
xb

(35)

SA =
1

M1M2

M1M2∑
i=1

cos−1

B∑
b=1

(xi,b · x̂i,b)√√√√ B∑
b=1

x2
i,b ·

√
B∑

b=1

x̂2
i,b

. (36)

Here, x̂b and xb represent the bth bands of the fused image and
original image and M1 and M2 are the horizontal and vertical
sizes of the image. σx̂bxb

is the covariance between x̂b and
xb, mx̂b

and mxb
are their means, and σx̂b

and σxb
are their

standard deviations. The ideal values of the rmse, CC, UIQI,
ERGAS, and SA are 0, 1, 1, 0, and 0, respectively.

The first series of experiments is performed on QuickBird
images. The PAN and MS images were first resampled from
0.61 m and 2.44 m to 2.44 m and 9.76 m. Fig. 1(a) shows a
resampled PAN image, and Fig. 1(b) shows the cubic interpola-
tion version of resampled MS images (composition of bands 3,
2, and 1). The algorithms of Ehlers, PCA, GS, additive wavelet
luminance proportional (AWLP) [17], and Li–Yang [35] and
the proposed algorithm were implemented to make a compar-
ative analysis. In order to effectively validate the advantages
of the defined functions of the regularization parameters, the
fusion model of (30) is also implemented. We call this method
traditional parameter determination of a model-based method
(TPDM). The termination threshold d in (23) was set to 10−7,
the parameter μ in (16) was set to 30, and λtradeoff was set to 60.
The fusion results are shown in Fig. 1(c)–(h). Fig. 1(i) shows
the original MS images. Apart from the fact that the TPDM
result is blurred to some extent and the AWLP result appears
darker, there is no great difference between the results from a
visual inspection. We think that one reason for this may be that
the images are 16 b. Table I shows the evaluation results for
the synthesis property. The proposed algorithm produced better
quantitative evaluation results than all other fusion methods in
terms of all the five indices.

It should be noted that, although the evaluation results in
bands 1 and 2 of the proposed method are a little poorer
than those of TPDM, in terms of rmse, CC, and UIQI, it
obtained much better results in band 4. In contrast, the results
of TPDM in band 4 are very bad. Regarding the ERGAS and

Fig. 1. Fusion results of the simulated QuickBird experiment (composed of
near infrared, red, and green data bands). (a) Resampled PAN image. (b) Cubic
interpolation of resampled MS image. (c) Ehlers fusion method. (d) AWLP
fusion method. (e) GS fusion method. (f) Li–Yang fusion method. (g) TPDM
fusion method. (h) Proposed fusion method. (i) Original MS image.
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TABLE I
EVALUATION OF THE FUSION RESULTS IN THE SIMULATED

QUICKBIRD EXPERIMENT (SYNTHESIS PROPERTY)

Fig. 2. Comparison of the proposed method with the TPDM method: (a) UIQI
(band-averaged) values versus the regularization parameter and (b) ERGAS
values versus the regularization parameter.

Fig. 3. Comparison of the restoration-based method with the proposed
method. (a) UIQI values versus the adjustable parameter λtradeoff . (b) ERGAS
values versus the adjustable parameter λtradeoff .

SA indices, the advantage of the proposed method is also very
obvious. This validates that the proposed method has the perfor-
mance to adaptively adjust the relative contributions in different
bands, using the corresponding regularization parameters. A
visualized comparison between these two methods in terms
of the UIQI (band-averaged) and ERGAS indices is shown in
Fig. 2. In the proposed method, λtradeoff is set to 60, and all
other regularization parameters are determine adaptively. In the
TPDM method, the parameter λ in (30) is respectively set to
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1.

Fig. 4. Fusion results of the simulated IKONOS experiment (composed of
near red, green and blue data bands). (a) Resampled PAN image. (b) Cubic
interpolation of resampled MS image. (c) Ehlers fusion method. (d) AWLP
fusion method. (e) GS fusion method. (f) Li–Yang fusion method. (g) TPDM
fusion method. (h) Proposed method. (i) Original MS image.
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TABLE II
EVALUATION OF THE FUSION RESULTS IN THE SIMULATED

IKONOS EXPERIMENT (SYNTHESIS PROPERTY)

An additional experiment was implemented to compare the
proposed method and the restoration-based method. In the
experiment, the original MS image was first blurred by a 9 × 9
Gaussian kernel with a variance of 4 in order to the relieve the
effects of aliasing [53] and then down sampled to obtain the
degraded MS images. After that, the degraded versions were
respectively fused using restoration-based and reconstruction-
based methods. A series of values of the adjustable parameter
λtradeoff , 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 50, 100, 200,
500, 700, and 1000, is respectively tested in the experiment.
The ERGAS and UIQI (band-averaged) evaluation values of the
fused images against the adjustable parameter are respectively
demonstrated in Fig. 3(a) and (b). Compared to the restoration-
based method, the proposed method is able to obtain much
better results and is less sensitive to the adjustable parameter.
The main reason is that the restoration-based method transfers
errors of interpolation into the fusion process. The proposed
method, however, avoids this error accumulation.

The simulated experimental results of the IKONOS images
are shown in Fig. 4, and Table II shows the quantitative indices
of the different fusion methods. In terms of the rmse, ERGAS,
and SA indices, the evaluation results of all the fusion methods
are much poorer than those in the QuickBird experiments. The
main reason for this is that the PAN image that was used lost
some detailed information which appears in the original MS
images. Please see the labeled regions in Fig. 4(b) and (i).
Relatively, the proposed method outperforms the other fusion
methods in terms of all the indices.

B. Experiments on Real Images

In this section, the proposed method was tested on real
observed images. Fig. 5(a) and (b) shows the original PAN
image and the interpolated version of MS QuickBird images.

Fig. 5. Fusion results of the real QuickBird experiment (composed of near
red, green and blue data bands). (a) PAN image. (b) Cubic interpolation of
MS image. (c) Ehlers fusion method. (d) AWLP fusion method. (e) GS fusion
method. (f) TPDM fusion method. (g) Proposed method with λtradeoff = 2.
(h) Proposed method with λtradeoff = 10.

Since the Li–Yang method desires additional HR MS images
to construct a dictionary [35], it is unable to be implemented
in the real experiments. The fused results of the Ehlers, AWLP,
GS, and TPDM methods are respectively shown in Fig. 5(c)–(f),
and Fig. 5(g) and (h) shows the results of the proposed
method, with λtradeoff = 2 and λtradeoff = 10, respectively.
Here, the Huber parameter μ is set to 1. By visual comparison,
the Ehlers method shows better performance of spectral fidelity
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TABLE III
EVALUATION RESULTS OF THE REAL QUICKBIRD EXPERIMENT

(CONSISTENCY PROPERTY)

Fig. 6. Sensitivity analysis of the Huber parameter μ. (a) λtradeoff = 2 and
μ = 100. (b) λtradeoff = 2 and μ = 1. (c) λtradeoff = 10 and μ = 100.
(d) λtradeoff = 10 and μ = 1.

than other existed methods, but the image is oversmoothed. The
visual equality of the AWLP image is not satisfactory because
of the color distortion, which is obvious on vegetation regions.
It is interesting that the AWLP method obtains good evaluation
values from Table III. In particular, the SA is very small.
Therefore, quantitative evaluation does not completely agree
with visual judgment for the AWLP method here. However,
the proposed method is competitive in terms of both visual and
quantitative evaluations. Moreover, the adjustable function of
λtradeoff is effectively embodied. When it is set a smaller value
(λtradeoff = 2), the fused image is clearer with weaker spectral
fidelity, and when it is set a larger value (λtradeoff = 10), the
result has better spectral consistency but lower image definition.

The function of the edge-preserving Huber–Markov prior
model (12) was tested, and the sensitivity analysis of the
parameter μ is shown in Fig. 6. When λtradeoff is relatively
small, the spatial structures desired by the MS images can be
sufficiently extracted from the PAN image; therefore, the fusion
result is not sensitive to the Huber parameter μ. Oppositely,
if the spectral maintenance is strictly demanded in the fusion
process, λtradeoff should be set to a larger value. Similar to the
Gauss–Markov and Laplacian models, the Huber model also
leads to smoothed results when μ is large in this case. However,

Fig. 7. Fusion results of the real IKONOS experiment (composed of near
red, green and blue data bands). (a) PAN image. (b) Cubic interpolation of
MS image. (c) Ehlers fusion method. (d) AWLP fusion method. (e) GS fusion
method. (f) TPDM fusion method. (g) Proposed method with λtradeoff = 2.
(h) Proposed method with λtradeoff = 10.

the smooth problem can be well solved by adjusting μ to a small
value. This is an important advantage of the Huber–Markov
model compared to the Gauss–Markov and Laplacian models.

In the last series of experiments, the fusion methods were
applied to real IKONOS images. The MS image [see Fig. 7(b)]
was fused with the corresponding PAN image [see Fig. 7(a)]
using the aforementioned methods. The fused results are re-
spectively shown in Fig. 7(c)–(h). Again, the fused image of the
Ehlers method is oversmoothed, and the AWLP method leads to
color distortion from visual judgments. Quantitative evaluation
in Table IV shows that the AWLP method never produces
good values as in the QuickBird experiments. The model-
based TPDM method outperforms all other existed methods
but is inferior compared to the proposed method. Fig. 8 shows
the horizontal profiles of digital values on several degraded
versions of images in Fig. 7. It is seen that the Ehlers method
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TABLE IV
EVALUATION RESULTS OF THE REAL IKONOS EXPERIMENT

(CONSISTENCY PROPERTY)

Fig. 8. Horizontal profiles of digital values of the 45th line on the degraded
versions of Ehlers, AWLP, TPDM, and proposed results and original MS
images in Fig. 7(a)–(d): Bands 1, 2, 3, and 4.

has good performance to retain the curve shape but has great
absolute errors. This is the reason why it produces high CC
values but bad SA values. The curves of the proposed method
are the most proximal to those of the original MS images.

VII. CONCLUSION

This paper presents an adjustable model-based method for
the MS-PAN image fusion problem. The proposed method has
been tested using QuickBird and IKONOS images. The fused
images were evaluated using the quality indices of mean square
error, CC, UIQI, ERGAS, and SA, in terms of both synthesis
property and consistency property. Evaluation results confirmed
that the proposed method outperforms the fusion methods of
Ehlers, AWLP, GS, Li–Yang, and TPDM. Nevertheless, further
work can potentially expand the method to incorporate a fast
optimization algorithm and use tensor representation [54] to
improve the matrix-based fusion model.
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